Template Class YOLO¶
Defined in File yolo.hpp
Class Documentation¶
-
template<typename OutputLayerType = ann::NegativeLogLikelihood<>, typename InitializationRuleType = ann::RandomInitialization>
class mlpack::models::YOLO¶ Definition of a YOLO object detection models.
- tparam OutputLayerType
The output layer type used to evaluate the network.
- tparam InitializationRuleType
Rule used to initialize the weight matrix.
- tparam YOLOVersion
Version of YOLO model.
Public Functions
-
YOLO(const size_t inputChannel, const size_t inputWidth, const size_t inputHeight, const std::string yoloVersion =
"v1-tiny", const size_t numClasses = 20, const size_t numBoxes = 2, const size_t featureSizeWidth = 7, const size_t featureSizeHeight = 7, const std::string &weights ="none", const bool includeTop = true)¶ YOLO constructor intializes input shape and number of classes.
- Parameters
inputChannels – Number of input channels of the input image.
inputWidth – Width of the input image.
inputHeight – Height of the input image.
yoloVersion – Version of YOLO model.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true.
numBoxes – Number of bounding boxes per image.
featureSizeWidth – Width of output feature map.
featureSizeHeight – Height of output feature map.
weights – One of ‘none’, ‘voc’(pre-training on VOC-2012) or path to weights.
includeTop – Must be set to true if weights are set.
-
YOLO(const std::tuple<size_t, size_t, size_t> inputShape, const std::string yoloVersion =
"v1-tiny", const size_t numClasses = 1000, const size_t numBoxes = 2, const std::tuple<size_t, size_t> featureShape = {7, 7}, const std::string &weights ="none", const bool includeTop = true)¶ YOLO constructor intializes input shape and number of classes.
- Parameters
inputShape – A three-valued tuple indicating input shape. First value is number of Channels (Channels-First). Second value is input height. Third value is input width.
yoloVersion – Version of YOLO model.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true.
numBoxes – Number of bounding boxes per image.
featureShape – A twp-valued tuple indicating width and height of output feature map.
weights – One of ‘none’, ‘voc’(pre-training on VOC) or path to weights.
-
inline ann::FFN<OutputLayerType, InitializationRuleType> &GetModel()¶
Get Layers of the model.
-
void LoadModel(const std::string &filePath)¶
Load weights into the model.
-
void SaveModel(const std::string &filePath)¶
Save weights for the model.