Template Class ResNet¶
Defined in File resnet.hpp
Class Documentation¶
-
template<typename OutputLayerType = ann::CrossEntropyError<>, typename InitializationRuleType = ann::RandomInitialization, size_t ResNetVersion = 18>
class mlpack::models::ResNet¶ Definition of a ResNet CNN.
- tparam OutputLayerType
The output layer type used to evaluate the network.
- tparam InitializationRuleType
Rule used to initialize the weight matrix.
- tparam ResNetVersion
Version of ResNet.
Public Functions
-
ResNet(const size_t inputChannel, const size_t inputWidth, const size_t inputHeight, const bool includeTop = true, const bool preTrained = false, const size_t numClasses = 1000)¶
ResNet constructor intializes input shape and number of classes.
- Parameters
inputChannels – Number of input channels of the input image.
inputWidth – Width of the input image.
inputHeight – Height of the input image.
includeTop – Must be set to true if preTrained is set to true.
preTrained – True for pre-trained weights of ImageNet, default is false.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true, default is 1000.
-
ResNet(std::tuple<size_t, size_t, size_t> inputShape, const bool includeTop = true, const bool preTrained = false, const size_t numClasses = 1000)¶
ResNet constructor intializes input shape and number of classes.
- Parameters
inputShape – A three-valued tuple indicating input shape. First value is number of channels (channels-first). Second value is input height. Third value is input width.
preTrained – True for pre-trained weights of ImageNet, default is false.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true.
-
inline ann::FFN<OutputLayerType, InitializationRuleType> &GetModel()¶
Get Layers of the model.
-
void LoadModel(const std::string &filePath)¶
Load weights into the model and assumes the internal matrix to be.
-
void SaveModel(const std::string &filepath)¶
Save weights for the model and assumes the internal matrix to be.