Template Class DarkNet¶
Defined in File darknet.hpp
Class Documentation¶
-
template<typename OutputLayerType = ann::CrossEntropyError<>, typename InitializationRuleType = ann::RandomInitialization, size_t DarkNetVersion = 19>
class mlpack::models::DarkNet¶ Definition of a DarkNet CNN.
- tparam OutputLayerType
The output layer type used to evaluate the network.
- tparam InitializationRuleType
Rule used to initialize the weight matrix.
- tparam DaknetVer
Version of DarkNet.
Public Functions
-
DarkNet(const size_t inputChannel, const size_t inputWidth, const size_t inputHeight, const size_t numClasses = 1000, const std::string &weights =
"none", const bool includeTop = true)¶ DarkNet constructor intializes input shape and number of classes.
- Parameters
inputChannels – Number of input channels of the input image.
inputWidth – Width of the input image.
inputHeight – Height of the input image.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true.
weights – One of ‘none’, ‘imagenet’(pre-training on ImageNet) or path to weights.
includeTop – Must be set to true if weights are set.
-
DarkNet(const std::tuple<size_t, size_t, size_t> inputShape, const size_t numClasses = 1000, const std::string &weights =
"none", const bool includeTop = true)¶ DarkNet constructor intializes input shape and number of classes.
- Parameters
inputShape – A three-valued tuple indicating input shape. First value is number of channels (channels-first). Second value is input height. Third value is input width.
numClasses – Optional number of classes to classify images into, only to be specified if includeTop is true.
weights – One of ‘none’, ‘imagenet’(pre-training on ImageNet) or path to weights.
-
inline ann::FFN<OutputLayerType, InitializationRuleType> &GetModel()¶
Get Layers of the model.
-
void LoadModel(const std::string &filePath)¶
Load weights into the model.
-
void SaveModel(const std::string &filePath)¶
Save weights for the model.